下一代智能汽车的毫米波雷达系统实例 留言

现代汽车随着其发展包含了越来越复杂的电子设备,汽车制造商正将高级驾驶辅助系统(ADAS)配置在其新开发的型号上,通过增加汽车的安全性以获得更高的安全率。

大多数交通事故的发生是由于驾驶人员的错误,ADAS通过提出各种各样的问题,包括碰撞避让、胎压过低,来警醒和辅助驾驶人员,被证明可减小伤亡。

ADAS使用的雷达技术主要聚焦在频率76-81GHz。这些雷达需要面对各种各样的应用、工作条件和目标检测的挑战,以提供特定驾驶人员辅助功能所需要的可靠覆盖范围(距离)和视场(角度)。

本文给出了为下一代智能汽车开发毫米波雷达系统和天线阵列技术背后的挑战性技术,用实例阐述了如何在ADAS应用中成功使用NI AWR设计环境平台,特别是Visual System Simulator™ (VSS)系统设计软件内的雷达设计功能。

ADAS技术

射频易商城

目前,制造商基于视觉传感器技术和工作于24GHz与/或77GHz的雷达系统来实现这些系统。视觉系统检测道路标识,处理其他的可视化道路信息,但是容易受到降水特别是雾与雪导致的性能下降的影响,也容易受距离的影响。

另一方面,远距离雷达(LRR)支持多种功能,能轻松处理30到200 米的距离,近距离雷达(SRR)能检测低于30米的距离。目前混合结构中广泛使用的用于SRR检测的24GHz频段,到2022年在新的汽车上要逐渐淘汰。同时,支持LRR的77GHz频段(76-81GHz)预期将为未来的汽车同时提供近距离和远距离检测。图1给出了近/中和远距离雷达的详细参数。

射频易商城

77GHz频段的技术优点包括:天线较小(只有目前24GHz的三分之一)、允许的发射功率较高,更重要的是可以得到较宽的带宽,从而获得较高的目标分辨率。雷达调制技术、天线波束控制、系统结构以及半导体技术的进步,促使人们在未来ADAS汽车中快速选择毫米波雷达。

为了应用好这些技术,雷达开发者需要与射频有关的系统设计软件,以支持具有射频前端元件详细分析的雷达仿真,包括非线性射频链路、高级天线设计以及信道建模。在雷达原型机进行昂贵地建造与测试之前,电路与电磁(EM)分析的协同仿真提供了真实系统性能的准确描述。

NI AWR软件提供了这些能力,汽车雷达产品开发的所有这些软件都集中在一个平台——从最初的框架,到通过天线阵列物理层设计的调制研究,再到基于Ⅲ-Ⅴ或硅集成电路技术的前端电子仿真。

NI AWR设计环境平台集成了这些关键的雷达技术,为辅助要处理与ADAS电子有关的及其复杂的物理层和电气设计数据的工程设计团队提供必要的自动化。ADAS支持包括:

. 雷达系统的波形设计、基带信号处理和参数估计,具有雷达测量的特殊分析,也具有射频元件和信号处理的综合行为模型。

. 收发信机射频/微波前端的设计,具有针对印制板(PCB)和单片微波IC(MMIC)/RFIC设计的电路级分析和建模(分布传输线、有源和无源器件)。

. 平面/3D 电磁分析,用于描述天线和天线阵列、无源结构、复杂互连以及外壳的电气行为。

. 仿真软件和测试仪表的互联。

雷达结构和调制类型

射频易商城

对于自适应巡航控制(ACC),为了处理高速公路上的多目标场景,目标测距和速度测量要同时进行,要求既有高分辨率又有准确性。目前的ACC系统使用相对熟悉的波形,具有较长测量时间(5-100ms)。与之相比,未来针对安全应用的开发,如避免碰撞(CA)或自动驾驶(AD),要求具有更高的可靠性(极低的虚警率)和极快的反应时间。

对汽车雷达系统的重要要求包括:ACC的最大探测范围近似为200m,测距精度大约1m,速度分辨率2.5km/h。为满足这些系统要求,已实现了各种波形调制技术和结构,包括连续波(CW)发射信号或经典的具有超窄脉宽的脉冲波形。

对于固定的高分辨率测距系统而言,与脉冲波形相比CW雷达系统的主要优点是测量时间相对较低和计算复杂。文献中常见的两类CW波形包括线性频率调制(LFMCW)和移频键控(FSK),移频键控技术至少使用两种不同的离散频率。表1比较了不同雷达结构及其优缺点。

射频易商城

对于ACC应用,同时进行测距和相对速度的测量极其重要。LFMCW和FSK可满足这些要求。LFMCW需要多个测量周期和数学计算以解决模糊性,而FSK测距精度则差了点。结果,一种将LFMCW和FSK结合在一起称为多频移键控(MFSK)的单波形信号令人们极其感兴趣。

MFSK是专为汽车应用雷达开发的,包含两个或更多具有交替频移以及一定带宽和持续时间的发射频率,如图2[1]所示。

射频易商城

如前所述,脉冲雷达也被广泛应用于汽车雷达系统。相对速度的确定可以用相关发射机和接收机测量包含多普勒频移的脉冲之间相位变化来获取。对于多普勒(PD)雷达,测距仍然依靠信号的传播时间。为了同时进行测距和相对速度的测量,脉冲重复频率是一个重要的参数

VSS软件专用于RF系统设计和实现

射频易商城

哪一种结构和波形调制技术能达到开发和产品成本目标之间平衡所必需的性能,在确定时需要作很多权衡。VSS软件可满足这些需求。VSS软件专用于RF系统设计和实现,提供需要的常用仿真技术工具箱、无线/信号处理模块以及对用户开发代码的支持。

VSS软件是一种射频、无线通信和雷达设计的解决方案,提供为准确描述当今先进的雷达系统信号产生、发射、天线、T/R开关、杂散、噪声、干扰、接收、信号处理和信道模型设计挑战和分析需求所必须的射频和数字信号处理(DSP)部件的仿真和详细建模。

射频易商城

图3给出了一种可行的ACC雷达结构、调制框图、信道建模和测量配置的VSS工作空间示例。该工作空间包含多普勒(PD)雷达系统设计,具有用于仿真的信号产生、射频发射、天线、杂散、射频接收、动目标检测(MTD)、恒虚警(CFAR)处理器、信号检测等。

Chirp信号的电平为0dbm,PRF=2kHz,占空比25%。目标模型根据多普勒频率偏移和目标距离定义,到达角(THETA/PHI)根据数据文件规定,随着时间变化,产生多普勒频率和信道延迟以描述不同速度和距离的目标反射信号。可以包含雷达杂散模型,其功率谱密度形状也可以改变。在本例中,杂散的幅度分布设为瑞利型,杂散的功率谱设为Weilbull概率分布。

射频易商城

图4中的射频发射机包括振荡器、混频器以及滤波器,其增益、带宽和载频基于系统的要求或射频团队提供的实际硬件性能进行设定。同样,射频接收机包括振荡器、混频器、放大器和滤波器,其增益、带宽和载频基于系统的要求进行设定。

在能得到发射机前端设计的细节时与Microwave Office电路仿真软件联合仿真是可行。本文后面的小节将讨论通过电路、系统和EM协同仿真来分析收发信机电子元件和波束成形天线阵列之间的互动。

为了更有效检测运动目标,使用了MTD。MTD基于PD雷达的高性能信号处理算法。一组多普勒滤波器或FFT算子覆盖了所有可能期望的多普勒频移,而且在CFAR处理中使用了MTD的输出。在本特例中,提供了检测率的测量和CFAR。

射频易商城

雷达信号波形必须在时域在接收机输入端进行测量。因为目标返回信号通常受杂散、干扰或噪声的影响,在时域进行检测是不可行的。MTD用来在频域实现多普勒和距离检测。在MTD模型中,与目标测距和多普勒频率相应的数据被集中起来。然后,使用CFAR处理器基于检测和虚警概率设置判决门限,如图5所示。

这种相对简单的设计可用作不同PD应用的模板。雷达信号是脉冲重复频率(PRF)、功率和脉宽(占空比)的函数。这些参数可以根据不同的情形进行改变。在仿真中,雷达信号可以被任何通过数据文件读入器定义的信号替换。

数据文件读入器可以方便地使用记录的或定制的数据。VSS提供的仿真和建模能力,可优化雷达结构,增强信道模型准确性的(包括多径衰落和地杂波),推导收发信机链路预算参数和详细天线辐射方向图需求。

射频易商城

图6示出了几种仿真结果曲线,包括发射和接收chirp波形、天线方向图和几种系统测量,如相对速度和距离。在仿真中,到目标的距离扫描反映了接近并经过静止雷达的汽车导致多普勒频率从负值变为正值(红色曲线),在目标经过雷达时相对距离为0。在用于ACC的汽车雷达中,速度和距离信息用于警告驾驶员或采取纠正的动作(例如刹车)

多波束/多范围

射频易商城

典型ACC启停系统需要多个近程和远程雷达传感器检测周围的车辆。较短的测距雷达一般覆盖到60m,角度覆盖达±45°,允许检测可能并入当前车道的相邻车道。较远的测距雷达覆盖到250m,角度±5°到±10°,以检测同一车道的前方更远的车辆。

为支持多范围测距和角度扫描,模块制造商如Bosch、DENSO和Delphi开发并将多范围、多探测功能集成进能力增强、成本敏感的传感器,使用了多通道发射机(TX)/接收机(RX)结构。这些不同的范围可以采用多波束/多范围雷达利用诸如FMCW、天线阵列设计的数字波束成形等雷达技术来实现。 

 

原文始发于微信公众号(雷达通信电子战)

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

在线客服